Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Precise control of microtubule disassembly in living cells.

blue CRY2/CIB1 Cos-7 Control of cytoskeleton / cell motility / cell shape
EMBO J, 10 Jun 2022 DOI: 10.15252/embj.2021110472 Link to full text
Abstract: Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.
2.

Optogenetic Manipulation of Cell Migration with High Spatiotemporal Resolution Using Lattice Lightsheet Microscopy.

blue CRY2/CIB1 CRY2olig U-2 OS Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Jan 2022 DOI: 10.1101/2022.01.02.474058 Link to full text
Abstract: Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.
3.

Precise control of microtubule disassembly in living cells.

blue CRY2/CIB1 Cos-7 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 9 Oct 2021 DOI: 10.1101/2021.10.08.463668 Link to full text
Abstract: Microtubules (MTs) are components of the evolutionarily conserved cytoskeleton, which tightly regulates various cellular activities. Our understanding of MTs is largely based on MT-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific MT populations due to their slow effects on the entire pool of MTs in cells. To address this limitation, we have used chemogenetics and optogenetics to disassemble specific MT subtypes by rapid recruitment of engineered MT-cleaving enzymes. Acute MT disassembly swiftly halted vesicular trafficking and lysosome dynamics. We also used this approach to disassemble MTs specifically modified by tyrosination and several MT-based structures including primary cilia, mitotic spindles, and intercellular bridges. These effects were rapidly reversed by inhibiting the activity or MT association of the cleaving enzymes. The disassembly of targeted MTs with spatial and temporal accuracy enables to uncover new insights of how MTs precisely regulate cellular architectures and functions.
4.

Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions.

blue iLID Cos-7 Organelle manipulation
Nat Mater, 6 Nov 2017 DOI: 10.1038/nmat5006 Link to full text
Abstract: Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.
Submit a new publication to our database